NEW ENERGY CARRIERS IN ROAD TUNNELS 2021 WEBINAR – ITA-COSUF, PIARC, KPT

CONSEQUENCES OF BATTERY ELECTRIC
VEHICLE FIRES IN TUNNELS – A QUANTITATIVE
ASSESSMENT

Oliver Heger, ILF Consulting Engineers

Bernhard Kohl, ILF Consulting Engineers

Regina Schmidt, ILF Consulting Engineers

Patrik Fößleitner, FVT

WHAT HAVE WE LEARNED FROM THE BEV FIRE TESTS CONSULTING

RESULTS FROM BATTERY- AND BEV FIRE TESTS

"We know, after almost a decade of testing, BEV fires can lead to increased heat release rates and increased emission of toxic products, but the increase over all is rather limited."

BRAFA PROJECT

Quantitatively assess the consequences of BEV fires on tunnel users by implementing recorded hazards in TuRisMo.

HAZARDS OF TUNNEL FIRES

HAZARDS AFFECTING EGRESS CAPABILITY(1)

- Hazard of high temperatures
- Hazard of toxic substances
- Hazard of reduced visibility

Stec, A.A., Hull, T.R., Introduction to fire toxicity, 2010

HAZARDS OF TUNNEL FIRES

T3.16

T3.12

HAZARDS AFFECTING EGRESS CAPABILITY(1)

- Hazard of high temperatures
- Hazard of toxic substances
- Hazard of reduced visibility

Stec, A.A., Hull, T.R., Introduction to fire toxicity, 2010

BRAFA HAZARD MEASUREMENTS

Time [s] 600

GENERALIZATION OF THE FINDINGS

FINDINGS FROM THIS COMPARISON

- Temperatures and concentrations are higher for BEV tests
- Temperatures and concentrations at face level and as cross-sectional average are still tenable
- What happens in a different tunnel environment and what about interaction effects?

FOR A GENERALIZED ANSWER WE NEED A UNIVERSALLY APPLICABLE MODEL

DETERMINE HRR AND TOXIC GAS EMISSION RATES FOR BEV

DETERMINE TOXIN EMISSION RATES AND HRR

INPUT PARAMETERS FOR CONSEQUENCE MODEL

- HRR(t) from enthalpy flow
- Emission rates from mass flow and concentrations

DETERMINE TOXIN EMISSION RATES AND HRR

"The developed approach is not limited to a specific risk model but can be applied in any risk model which allows to define toxic emission rates and is based on a physiological intoxication- and irritancy model (i.e. Purser Model)."

EMISSION RATES

Toxic	BEV 1	ICE	BEV 2	ICE RVS
product	[kg/MJ]	[kg/MJ]	[kg/MJ]	[kg/MJ]
СО	0.002	0.0013	0.0019	0.0036
CO ₂	0.094	0.124	0.101	0.092
NO _x	0.00025	0.00035	0.00034	-
HCI	0.00052	0.00039	0.00034	-
SO ₂	0.00012	0.000044	0.000045	-
H ₃ PO ₄	0.000034	0.000004	-	-
HF	0.00049	0.00005	0.00021	-
HCN	-	-	-	0.0009
Soot	-	-	-	0.0025

BEV-FIRE SCENARIO ANALYSIS

D.A. PURER FED/FIC MODEL

SFPE Handbook of Fire Protection & ISO 13571: Life threatening Components of Fire
$$FED_{Asphyxiation}(t) = \sum_{\tilde{t}=0}^{t} \left(FI_{CO}(\tilde{t}) + FI_{CN}(\tilde{t}) + FLD_{irr}(\tilde{t})\right) \times V_E \times V_{CO_2}(\tilde{t}) + FI_{LO}(\tilde{t})$$

$$Irritants: \ HCL, HF, SO2, NO2$$

BEV-FIRE CONSEQUENCE ANALYSIS

BEV RISK ANALYSIS

MODEL TUNNEL PARAMETERS

- 3 km tunnel with 1.5 % inclination
- unidirectional traffic longitudinal ventilation
- Horseshoe cross-section 57 m²
- 300 m cross-passage distance

- 30'000 veh./day in each direction
- 14.5% hgv, 0.5% BUS
- 0.3% congestion

GENERALIZED FIRE CURVES

CONCLUSIONS

GENERAL RESULTS

- Generic consequence model for BEV fires was developed and BEV specific input data was deduced
- Increased fire size and emission rates of specific toxins lead to a increased fire risk
- Overall risk for BEV is comparable to risk associated with conventional vehicles

LIMITATIONS OF THE RESULTS

- General conclusions based on a small number of fire tests must be interpreted with care
- Risk of a single BEV fire can be increased due to specific circumstances
- Localized hazards in the direct vicinity of the BEV where not investigated
- Results should be validated based on a larger dataset

